Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Microelectronics Journal
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electronic anisotropy of the GaAs(001) surface studied by energy loss spectroscopy

Authors: BALZAROTTI, ADALBERTO; FANFONI, MASSIMO; PATELLA, FULVIA; ARCIPRETE, FABRIZIO; Placidi, E.;

Electronic anisotropy of the GaAs(001) surface studied by energy loss spectroscopy

Abstract

Abstract High-Resolution Electron-Energy-Loss Spectroscopy (HREELS) has been applied to investigate the anisotropy of the GaAs(001)-c(4×4) and β2(2×4) reconstructions. Measurements have been performed on high-quality samples grown in situ by Molecular Beam Epitaxy. The loss intensity is different in the directions parallel and perpendicular to dimers, particularly close to the fundamental gap. We construct relative difference intensity spectra which can be directly compared with the differential reflectivity spectra of the RAS spectroscopy. A one-to-one correspondence is found between experimental and calculated electronic transitions up to about 3 eV. The surface anisotropy given by EELS is about two orders of magnitude higher than that measured optically. The contributions to the anisotropy originate entirely from a few atomic layers beneath the surface. In the β2 phase we find direct evidence of transitions involving the dimers of the top atomic layer which are well separated by those involving bulk states modified by the surface.

Country
Italy
Subjects by Vocabulary

Microsoft Academic Graph classification: Materials science Electron energy loss spectroscopy Spectral line Atomic electron transition Atomic physics Anisotropy Spectroscopy Order of magnitude Surface reconstruction Molecular beam epitaxy

Keywords

General Engineering, Electron-Energy-Loss Spectroscopy; Molecular Beam Epitaxy; Surface reconstruction, Settore FIS/03 - Fisica della Materia, Molecular Beam Epitaxy, Surface reconstruction, Electron-Energy-Loss Spectroscopy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Welcome to EnerMaps Gateway! Find the latest scientific data.