Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Subject
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products (1 rule applied)

  • Energy Research

Relevance
arrow_drop_down
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Richard J. Farris; Jay. L. Goldfarb;

    AbstractPeeling of flexible poly(ethylene terephthalate), PET, and elastic steel films, adhesively bonded with a pressure sensitive adhesive layer, was analyzed from a thermodynamic perspective with the intent of determining how the energy expended in separating the bonded materials is consumed. The mechanical work expended and the heat dissipated during peeling were simultaneously measured using deformation calorimetry. For the PET backing material, which has a demonstrated capacity to store deformation energy as latent internal energy, most, but not all, of the peel energy was dissipated as heat. When perfectly elastic steel films were peeled, all of the peel energy was dissipated as heat, proving that no latent internal energy is stored in the adhesive layer during peeling and suggesting that the internal energy change of peeling adhesive backed with PET film was stored as latent internal energy in the PET backing. The stored latent internal energy in the peeled PET was measured using solution calorimetry. The thermodynamics of tensile drawing for PET was studied using deformation calorimetry, solution calorimetry, differential scanning calorimetry and thermomechanical analysis.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MRS Proceedingsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MRS Proceedingsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: G. W. Adams; Richard J. Farris;

    The thermodynamic behavior of poly(bisphenol A carbonate) (PC) during uniaxial cold drawing and the properties of the drawn polymer were examined. Isothermal deformation calorimetric measurements were made during the drawing process. The deformation calorimeter measures heat, work, and internal energy changes for deformation. It was found that PC exhibited nonideal plasticity with approximately 50–80% of the work of deformation dissipated as heat. The remainder of the work of deformation was stored as a latent internal energy change. The value of the internal energy change was dependent on strain rate at 20°C but was not strongly dependent on temperature in the range 20–65°C. Thermomechanical measurements on cold-drawn PC samples demonstrated striking behavior at temperatures far below the glass transition temperature Tg. Stress-temperature experiments showed that the stress increased for uniaxially constrained samples, and this stress increase began at temperatures just above the deformation temperature. Additional experiments indicated that the changes which took place during cold drawing were physical in nature and were thermoreversible. These changes in physical properties are related to those which occur due to physical aging below Tg.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Polymer S...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    49
    citations49
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Polymer S...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Richard J. Farris; Jay L. Goldfarb;

    Peeling of polyimide coatings bonded to aluminum substrates was analyzed from a thermodynamic perspective with the intent of determining how the energy expended in separating the bonded materials is consumed. The mechanical work expended and the heat dissipated during peeling were simultaneously measured using deformation calorimetry. The surfaces exposed by peeling were analyzed by electron microscopy and electron spectroscopy. The thermodynamics of tensile drawing for polyimide were studied using deformation calorimetry and thermomechanical analysis. When polyimide coatings were peeled from aluminum substrates at a peel angle of 180°, almost all of the mechanical energy was consumed in propagating the bend through the coating being peeled. The fraction of peel energy dissipated as heat was 48 ± 1.3% and nearly all of the remainder was stored as latent internal energy in the peeled polyimide. When the bend is propagated through aluminum, which has a limited capacity to store latent internal energy, 97-10...

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    10
    citations10
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Subject
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products (1 rule applied)
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Richard J. Farris; Jay. L. Goldfarb;

    AbstractPeeling of flexible poly(ethylene terephthalate), PET, and elastic steel films, adhesively bonded with a pressure sensitive adhesive layer, was analyzed from a thermodynamic perspective with the intent of determining how the energy expended in separating the bonded materials is consumed. The mechanical work expended and the heat dissipated during peeling were simultaneously measured using deformation calorimetry. For the PET backing material, which has a demonstrated capacity to store deformation energy as latent internal energy, most, but not all, of the peel energy was dissipated as heat. When perfectly elastic steel films were peeled, all of the peel energy was dissipated as heat, proving that no latent internal energy is stored in the adhesive layer during peeling and suggesting that the internal energy change of peeling adhesive backed with PET film was stored as latent internal energy in the PET backing. The stored latent internal energy in the peeled PET was measured using solution calorimetry. The thermodynamics of tensile drawing for PET was studied using deformation calorimetry, solution calorimetry, differential scanning calorimetry and thermomechanical analysis.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MRS Proceedingsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MRS Proceedingsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: G. W. Adams; Richard J. Farris;

    The thermodynamic behavior of poly(bisphenol A carbonate) (PC) during uniaxial cold drawing and the properties of the drawn polymer were examined. Isothermal deformation calorimetric measurements were made during the drawing process. The deformation calorimeter measures heat, work, and internal energy changes for deformation. It was found that PC exhibited nonideal plasticity with approximately 50–80% of the work of deformation dissipated as heat. The remainder of the work of deformation was stored as a latent internal energy change. The value of the internal energy change was dependent on strain rate at 20°C but was not strongly dependent on temperature in the range 20–65°C. Thermomechanical measurements on cold-drawn PC samples demonstrated striking behavior at temperatures far below the glass transition temperature Tg. Stress-temperature experiments showed that the stress increased for uniaxially constrained samples, and this stress increase began at temperatures just above the deformation temperature. Additional experiments indicated that the changes which took place during cold drawing were physical in nature and were thermoreversible. These changes in physical properties are related to those which occur due to physical aging below Tg.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Polymer S...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    49
    citations49
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Polymer S...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Richard J. Farris; Jay L. Goldfarb;

    Peeling of polyimide coatings bonded to aluminum substrates was analyzed from a thermodynamic perspective with the intent of determining how the energy expended in separating the bonded materials is consumed. The mechanical work expended and the heat dissipated during peeling were simultaneously measured using deformation calorimetry. The surfaces exposed by peeling were analyzed by electron microscopy and electron spectroscopy. The thermodynamics of tensile drawing for polyimide were studied using deformation calorimetry and thermomechanical analysis. When polyimide coatings were peeled from aluminum substrates at a peel angle of 180°, almost all of the mechanical energy was consumed in propagating the bend through the coating being peeled. The fraction of peel energy dissipated as heat was 48 ± 1.3% and nearly all of the remainder was stored as latent internal energy in the peeled polyimide. When the bend is propagated through aluminum, which has a limited capacity to store latent internal energy, 97-10...

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    10
    citations10
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph