Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Subject
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2,574 Research products, page 1 of 258

  • Energy Research

10
arrow_drop_down
Relevance
arrow_drop_down
  • Open Access Turkish
    Authors: 
    Kiliçli, Anil;
    Publisher: Fen Bilimleri Enstitüsü

    Enerjide dışa bağımlılığı giderek artan ülkemizde en yoğun tüketim bina sektöründe olmaktadır. Bu sebeple binalarda enerji verimliliğini artıracak çözümlerin bir an önce uygulamaya geçmesi gerekmektedir. Bu amaç doğrultusunda oluşturulan bu tez çalışmasında, Ege Üniversitesi bünyesinde hizmet veren ve yüksek enerji tüketen Uluslararası Bilgisayar Enstitüsü binası irdelenerek enerji tasarruf performansı araştırılmıştır. Bunun için, binanın mevcut ve iyileştirilmiş durumunun enerji ve ekserji analizlerinin yapılmış, standartlara uygun iyileştirme önerileri sonucu binanın enerji tasarruf potansiyeli belirlenmiştir. Aynı zamanda, yönetmelikleri uygunlukları her iki durum içinde irdelenmiştir. Tez kapsamında gerçekleştirilen hesaplamalar sonucunda, mevcut bina yıllık bazda 192,57 kWh/m2yıl enerji tüketirken, önerilen iyileştirmeler sonucunda 153,08 kWh/m2yıl enerji tüketir hale gelmiştir. Yani, %21 oranında enerji tasarrufu sağlanmıştır. Ayrıca, binanın mevcut durumu dikkate alındığında yıllık bazda maksimum ekserji verimi %5,76 iken, iyileştirmeler sonucunda, hava kaynaklı ısı pompasında %9,89, toprak kaynaklı ısı pompasında ise %16,22 olmuştur. In our country which is dependent on the outward energy, the most intensive consumption is in the building sector. For this reason, the solutions that will increase the energy efficiency in the buildings should be applied as soon as possible. For this purpose, UBE building at Ege University was studied in the thesis study. For this, energy and exergy analyses of the existing and improved condition of the building were made and the energy saving potential of the building was determined. At the same time, their compliance with the regulations has been examined in both cases. As a result of the calculations carried out within the scope of the thesis, the existing building consumes 192,57 kWh/m2year of energy on an annual basis, resulting in the energy consumption of 153,08 kWh/m2year for the proposed improvements. That means energy savings of 21%. In addition, when the current situation of the building is taken into account, the maximum exergy efficiency rate on annual basis is 5.76%, As a result of the improvements, it was 9,89% in the air source heat pump and 16,22% in the earth source heat pump. 146

  • Publication . Other literature type . Conference object . 2019
    Open Access
    Authors: 
    Mantas Švažas; Valentinas Navickas; Rusnė Jegelavičiūtė;
    Publisher: Atlantis Press
    Country: Lithuania

    The authors of the article have investigated the constituents of competitive supply and have presented the algorithm of its formation in the sector of thermal power. The investigations conducted by them indicate that in a given market the supply of goods and services must be presented in proportion to their demand. In this way the business losses and costs from the unrealized demand are reducing and its general competitiveness is growing. The investigations conducted by the authors indicate that the bigger number of the market participants, the bigger influence is made to the business competitiveness by its ability to structurize the supply appropriately. To achieve competitive supply a stable business structure is necessary which enables to form business structures having a stable financial basis. As in the investigated market the action takes place with one product – thermal power – one can efficiently concentrate on the processes of formation of competitive supply. The information collected during the statistical investigation has indicated that the dynamics of untilled areas of agricultural destination can significantly affect the price of heat. By reclaiming these areas and starting to grow energetic plants one can achieve the reduction of the price of heat. Conditions to reorientate the energy system towards the production of the green energy are created. In this way an opportunity to form a competitive supply in respect of the business entities using fossil fuels appears.

  • Open Access Turkish
    Authors: 
    Yüksel, Ahmet;
    Publisher: Fen Bilimleri Enstitüsü

    Isıtma işlemleri, günlük yaşantıda ve endüstride yaygın olarak kullanılan uygulamaların içerisinde yer almaktadır. Konfor şartlarını sağlamak ve metallerin işlenmesini kolaylaştırmak gibi çeşitli sektörlerde bu tür uygulamalardan faydalanılmaktadır. Metal işlemeden, akışkan ısıtmaya kadar geniş uygulama alanı olan elektromanyetik indüksiyon da bu uygulamalardan birisidir. İndüksiyonlu hava ısıtma sistemi hastanelerde, seralarda vb. diğer şartlandırılmış hava gereksinimi olan yerlerin ihtiyacını karşılaması için tasarlanmış, yeni ve inovatif bir teknolojidir.Bu tez çalışmasında; indüksiyonlu hava ısıtma sisteminin enerji performansını belirlemek üzere termodinamik analizler yapılmıştır. Havanın iş akışkanı olarak kullanıldığı sistemde, ısı kayıplarının en aza indirilmesi ve ısıl verimin arttırılması hedeflenmiştir. Analizlerde termodinamiğin I. kanunu kullanılmıştır. Deneysel bulgu doğruluklarının belirlenmesinde, COMSOL programı ve belirsizlik analizlerine başvurulmuştur.Kullanılan prototiplerde, çıkış kesit çapı ve debideki artış ile toplam enerji kayıplarının ve havanın çıkış sıcaklığının azaldığı, ısıl verimin arttığı gözlemlenmiştir. Prototiplerin yalıtımlı durumları da değerlendirilmiş ve yalıtımlı prototiplerin veriminde artış gözlenmiştir. Bulgulara göre en yüksek ısıl verim, çıkış kesit çapının ve debinin en yüksek olduğu, yalıtımlı K-4 prototipde elde edilmiştir (%95,49). En yüksek hava çıkış sıcaklığı (95,4oC) ise; en küçük çıkış kesit çapına sahip yalıtımlı K-3 prototipine en düşük debinin uygulandığı deneyde elde edilmiştir. Heating operation is located in the applications which are widely used in daily life and industry. In various industries as to ensure comfort conditions and to facilitate the processing of metals is utilized from these types of applications. From metal processing to fluid heating, electromagnetic induction heating has a wide application range. Induction air heating system is designed to meet the needs in hospital, greenhouse etc. other requirements that air-conditioned place, is new and innovative technology.In this thesis; thermodynamic analysis was performed to determine the energy performance of the induction air heating system. Minimizing heat losses and increasing thermal efficiency was aimed for the system which used air as a working fluid. First law of thermodynamic was used in the analysis. To determine the accuracy of the experimental findings, COMSOL and uncertainty analysis were consulted.It was obtained that with increasing outlet cross-section diameter and mass flow rate, the total energy loss and outlet temperture of air was decreased, the thermal efficiency was increased for the prototypes. Insulated case of prototypes was evaluated and increased efficiency of insulated prototypes was observed. Based on the findings, the highest thermal efficiency were obtained for insulated K-4 which has the highest cross sectional outlet diameter and flow rate (%95,49). Maximum air temperature (95,4oC) was obtained in experiments in which insulated K-3 prototype with the smallest exit sectional diameter and the lowest flow rate. 99

  • Open Access Turkish
    Authors: 
    Çaştaban, Pelin;
    Publisher: Fen Bilimleri Enstitüsü

    ÖZET Bu çalışmada, ısıtma enerjisi korunumu açısından hacimler için uygun yönlendiriliş durumlarının belirlenmesi hedeflenmiştir. Bir başka deyişle, hacimlerde yıl boyunca gerçekleşen iç hava sıcaklığı değerlerinin değişimine bağlı olarak belirlenen yıllık ısıtma sürelerine göre, en kısa ısıtma süresini gerçekleştiren yönlendiriliş durumunun, ısıtma enerjisi korunumu açısından en uygun yönlendiriliş durumu olarak nitelendirilmesi amaçlanmıştır. Buna göre, önerilen yaklaşımda, yıllık ısıtma sürelerinin belirlenebilmesi için dış çevre iklim koşullarına ait verilerin ve hacimlerde herhangi bir yapma ısıtma sistemi olmadığı durumlarda, iç hava sıcaklıklarının saatlik değişimlerinin hesaplanabilmesi için hacme ilişkin yapma çevre değişkenlerinin değerlerinin belirlenmesi gerekmektedir. Bu hesaplamaların yapılabilmesi için zamana bağlı ve tek boyutlu ısı geçişi denklemlerinin çözümünde sonlu farklar yönteminin ele alındığı bir bilgisayar programından yararlanılmıştır. özellikle ılımlı ve soğuk iklim bölgeleri gibi ısıtma süresinin uzun olduğu bölgelerde, hacme ilişkin diğer yapma çevre değişkenlerinin değerleri de gözönünde bulundurularak, hacimlerde en kısa ısıtma süresini gerçekleştiren, dolayısıyla ısıtma enerjisi harcamalarının minimum düzeye indirilebilmesini sağlayan yönlendiriliş durumlarının belirlenebilmesi gerekli olmaktadır. SUMMARY DETERMINING APPROPRIATE ORIENTATION OF ROOMS FROM THE VIEWPOINT OF HEATING ENERGY CONSERVATION In a particular period of year, the use of active heating systems in rooms is needed because of the effects of the outdoor climatic elements. To create an indoor climate which satisfies users' climatic comfort for health while using minimum heating energy, the determination of the optimum combination of design parameters affecting indoor climate is required. Orientation is also one of the most important parameters to benefit from heating effect of solar radiation. This study suggests an approach for determining appropriate orientation of rooms from the viewpoint of heating energy conservation. The approach is based on heating periods in rooms related to annual variation of indoor air temperature. The aim is to determine orientation which minimizes heating period. The study consists of seven chapters. Chapter 1 In the first chapter, the significance of the subject is touched upon and the content of the study is explained. Chapter 2 In this chapter, the factors which require the use and conservation of heating energy in rooms are touched upon. One of the primary requirements in the room for health is to provide users' climatic comfort. Therefore, the main factor that requires the use of heating energy in the room is the necessity of climatic comfort. Climatic comfort is defined as conditions in which %80 or more of the users find the environment thermally acceptable. Climatic comfort is defined with combinations of different values of the parameters as follows. Environmental parameters (Indoor climatic elements) * Air temperature * Mean radiant temperature * Air velocity XI* Air humidity Personal parameters * Activity * Clothing Definition of climatic comfort can be made by means of Bioclimatic Chart. However, in the underheated period, climatic comfort condition in a room can be met using active heating systems. The reduction of active heating cost is needed because of limited energy sources, increasing prices and air pollution. In order to reduce active heating cost rooms should be designed as passive heating systems. Chapter 3 This chapter deals with the factors that are effective in process of heating energy conservation in rooms. These factors are classified such as; * Outdoor climatic elements - Radiation - Air temperature - Relative air humidity -Wind * Design parameters related to the built environment Built environment is considered at the city, building, room, component or material scale. So there are a lot of parameters that should be paid attention. The unit of built environment analyzed in this study is the room. The design parameters at the room scale are as follows. - Location of the room in the building - Dimensions and shape factor of the room - Orientation of the room - Optical and thermophysical properties of the room envelope Location of the room determines the number of external wall elements surrounding the room and consequently effects the amount of heat gain or loss by means of external elements. The shape factor of the room is described as the ratio of external wall length to room depth. The surface area of external walls that has an important effect on heat gain or loss changes with the shape factor. Orientation is one of the most important parameters because of the variation of solar angles and solar radiation intensity with orientation. XIIOptical parameters of the room envelope are * absorptivity * transmissivity Thermophysical properties are * overall heat transfer coefficient * transparency ratio * time lag * decrement factor All these parameters are effective on determining the amount of heat which is gained or lost by the room and also the amount of energy for providing climatic comfort in the room. Chapter 4 In this chapter, heating period is described and the relationship of heating energy conservation and heating period is explained. Heating period covers the period in which during the active heating systems are required in order to provide climatic comfort conditions for the users. Heating period may be defined by basing on the lowest indoor air temperature value from the climatic comfort point of view or the outdoor air temperature value which are given by Turkish Standards, Regulation for Protection of Air Quality, Codes of Municipal Police of Greater Istanbul. In this study, heating period is defined basing on the lowest indoor air temperature value from the climatic comfort point of view. The lowest indoor air temperature value from the climatic comfort point of view is determined as 21 °C by means of the Bioclimatic Chart. By taking as the basis the lowest indoor air temperature from the climatic comfort viewpoint, heating period is defined as the period during which the indoor air temperature is under 21 °C. If the heating period is long, energy cost increases proportionally. Therefore heating period is one of the criteria which are used for the determination of rooms that give the best performance from the viewpoint of heating energy conservation. Chapter 5 In this chapter, previous approaches that are used for determination appropriate orientation of rooms are introduced and discussed. The majority of previous approaches base the calculations on the intensity of solar radiation effecting either the unit area or the total area of the outer building surface. Also one of the previous approaches is based on XIIItemperature differences between the actual and the required inner surface temperature of the opaque envelope. These approaches are not based on the heating period criterion. But thermal effects of solar radiation on the indoor climate can be clearly determined when an approach based on heating period is used. The orientation that enables the minimum level of heating energy requirement can be also determined especially for moderate and cold regions which have long heating period. Chapter 6 This chapter covers the steps of the approach used to be determined appropriate orientation of rooms from the viewpoint of heating energy conservation. The main steps of the approach are as follows;. Gathering the outdoor climatic data such as solar radiation intensities, hourly air temperature values for the calculations included in the approach.. Assumption on the orientation alternatives for the room.. Determination of the values of design parameters. - determination of the location of the room in the building. - determination of dimensions and shape factor of the room. - determination of the room envelope.. Calculation of the hourly values of the indoor air temperature and preparation of the annual variation chart of indoor air temperature occuring in the rooms which have various orientation alternatives. In this approach, it is assumed that there is no supplementary heating system in the room. Time dependent heat flow calculations to determine indoor air temperature and inner surface temperatures are basing on the finite difference method. Thus the indoor air temperature at any particular time can be calculated by means of the following equation. A~T n m m t* = tj + (LA0ctj (toj - tj) + ZAp. ctj (tci - tj) + bh. I (lx. Ap) + Qv + Qk) m.ch 11 1 tj* indoor air temperature at any particular time, °C. tj indoor air temperature before a time increment At, °C. m mass of the air in the room, kg. XIVch specific heat of the air, J / kg°C. n EAoctj (t0j - tj) amount of heat exchange between the indoor air and the 1 inner surfaces of opaque components of the envelope within the time increment At, W. m EApcq (tCj - tj) amount of heat exchange between the indoor air and the 1 inner surfaces of transparent components of the envelope within the time increment At, W. bh absorptivity coefficient of the indoor air which is transmissed through the transparent components, m £ Ox. Ap) amount of solar heat gain from the transparent components 1 within the time increment At, W. Qv amount of heat exchange between the indoor environment and outdoor environment by means of ventilation and infiltration within the time increment At, W. Qk amount of heat gain to the indoor air from the heat sources in the room within the time increment At, W. Then the annual variation chart of indoor air temperature is prepared by means of hourly values of indoor air temperature.. Determination of heating periods in the room alternatives by taking as the basis the lowest indoor air temperature value from the climatic comfort point of view. The dates and hours on which the indoor air temperature is below 21 °C constitute the heating period. Accordingly, the 21 °C indoor air temperature curves on the annual variation chart also the boundaries of heating period.. Comparison of the room alternatives according to heating period and determination of the orientation which provides the shortest heating period. In this step, the rooms are compared to each other according to heating period. The room which provides the shortest heating period is determined. The orientation of this room is qualified as the most appropriate orientation. Chapter 7 This chapter deals with the application of the approach to the İstanbul region and the results of the application. By means of the approach,. The effect of code particular orientation on indoor climate can be studied. xv. The orientation which enable the maximum heating effect of the solar radiation can be determined for especially moderate and cold regions which have a long heating period..The optimal combination of the orientation and other design parameters related to the room can be determined from the viewpoint of heating energy conservation.. In case of other design parameters have been selected at certain values mandatoryly, the room which provides the optimal performance in heating energy conservation can be described by determining appropriate orientation. XVI 82

  • Open Access
    Authors: 
    Turi Handayani; Winarso Drajad Widodo; Ani Kurniawati; Ketty Suketi;
    Publisher: Institut Pertanian Bogor

    Waktu panen dapat berpengaruh terhadap umur simpan dan kualitas buah selama penyimpanan, sehingga dibutuhkan metode yang tepat dalam menentukan kriteria panen. Percobaan ni bertujuan untuk mengoptimasi akumulasi satuan panas sebagai kriteria panen pisang Barangan dan pengaruhnya terhadap kualitas buah. Percobaan dilakukan di PTPN VIII Parakan Salak, Sukabumi, Jawa Barat pada Oktober 2018 hingga Februari 2019 dengan menggunakan Rancangan Acak Kelompok (RAK) faktor tunggal dengan perlakuan lima waktu antesis. Antesis 1 (13 Oktober 2018), antesis 2 (20 Oktober 2018), antesis 3 (27 Oktober 2018), antesis 4 (3 November 2018) antesis 5 (10 November 2018). Hasil penelitian menunjukkan bahwa satuan panas 1 234.50±2.76 0C hari dapat digunakan sebagai kriteria panen pisang Barangan dengan umur panen 72 -73 HSA dan umur simpan 16-17 hari. Waktu antesis tidak berpengaruh terhadap ukuran buah saat dipanen, umur simpan, susut bobot, kualitas fisik dan kualitas kimia buah. Kata kunci: kualitas buah, kematangan, umur simpan, suhu, susut bobot

  • Open Access
    Authors: 
    O. V. Kostan;
    Publisher: Dniprovskii University of the Humanities
  • Authors: 
    Inna Gritsevich; Yury Dashevsky; Vladimir Zhuze;
    Publisher: Elsevier
  • Open Access
    Authors: 
    Zsolt Karácsonyi; Zoltán Hantos;
    Publisher: ERFARET

    <p class="p1">Az épületek energiafelhasználása napjainkban központi kérdés az Európai Unióban és Magyarországon egyaránt. <span class="s1">A tervek szerint 2021-től csak </span>közel nulla energiafogyasztású épületeket lehet építeni. Magyarországon az épületek energiafelhasználása adja a teljes energiafogyasztás 50–60%-át (ez egyes források szerint 40%, pontosan megbecsülni nagyon nehéz)<span class="s1">. Az épületek fűtési energiaszükséglete a teljes energiafogyasztás </span>mintegy 40%-át teszi ki. Egy épület üzemelése során<span class="s1"> a fűtés, a meleg víz, a hűtés és a szellőztetés használ fel energiát</span> – a világítás energiaigényét lakóépületek esetén elhanyagoljuk. Az adatok<span class="s1"> és a tapasztalat is azt mutatja, hogy a magyarországi épületállomány nagyon rossz állapotban van energetikai, elsősorban hőszigetelési szempontból. </span></p><p class="p2">Egy épület energiafelhasználását két tényező befolyásolja: az épületszerkezetek hőtechnikai minősége és az épületgépészeti rendszerek hatékonysága.<span class="s2"> E cikk a hatályos számító eljárások alkalmazásával kívánja modellezni és összehasonlítani külö</span>nböző épületszerkezetű épületek fűtési <span class="s2">energiaigényét. Ehhez egy átlagos lakóépület szolgál alapul. </span>A belső lehűlő felületekhez különböző külső térelhatároló<span class="s2"> szerkezeteket rendelt</span>ünk hozzá. Az épület egyszerű geometriájából adódóan a külső <span class="s2">falak és a zárófödém szerkezetét változtattuk. Kiszámítottuk a rétegtervi </span>hőátbocsátási tényezőket, az éves fűtési energiaszükségletet és az ehhez szükséges földgáz és tű<span class="s2">zifa mennyiségét.</span></p><p class="p3">A fa könnyűszerkezetes épület esetében ~25%-kal alacsonyabb a fűtés energiaigénye<span class="s2">, mint a hagyományos téglaépületek esetében.</span></p>

  • Open Access
    Authors: 
    Torres-Cruz Maria Monserrat; Fuentes-Davila Guillermo; Felix-Valencia Pedro;
    Publisher: IJAEB Publication
  • Publication . Part of book or chapter of book . 2011
    Authors: 
    Clayton Crockett;
    Publisher: Fordham University Press
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Subject
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2,574 Research products, page 1 of 258
  • Open Access Turkish
    Authors: 
    Kiliçli, Anil;
    Publisher: Fen Bilimleri Enstitüsü

    Enerjide dışa bağımlılığı giderek artan ülkemizde en yoğun tüketim bina sektöründe olmaktadır. Bu sebeple binalarda enerji verimliliğini artıracak çözümlerin bir an önce uygulamaya geçmesi gerekmektedir. Bu amaç doğrultusunda oluşturulan bu tez çalışmasında, Ege Üniversitesi bünyesinde hizmet veren ve yüksek enerji tüketen Uluslararası Bilgisayar Enstitüsü binası irdelenerek enerji tasarruf performansı araştırılmıştır. Bunun için, binanın mevcut ve iyileştirilmiş durumunun enerji ve ekserji analizlerinin yapılmış, standartlara uygun iyileştirme önerileri sonucu binanın enerji tasarruf potansiyeli belirlenmiştir. Aynı zamanda, yönetmelikleri uygunlukları her iki durum içinde irdelenmiştir. Tez kapsamında gerçekleştirilen hesaplamalar sonucunda, mevcut bina yıllık bazda 192,57 kWh/m2yıl enerji tüketirken, önerilen iyileştirmeler sonucunda 153,08 kWh/m2yıl enerji tüketir hale gelmiştir. Yani, %21 oranında enerji tasarrufu sağlanmıştır. Ayrıca, binanın mevcut durumu dikkate alındığında yıllık bazda maksimum ekserji verimi %5,76 iken, iyileştirmeler sonucunda, hava kaynaklı ısı pompasında %9,89, toprak kaynaklı ısı pompasında ise %16,22 olmuştur. In our country which is dependent on the outward energy, the most intensive consumption is in the building sector. For this reason, the solutions that will increase the energy efficiency in the buildings should be applied as soon as possible. For this purpose, UBE building at Ege University was studied in the thesis study. For this, energy and exergy analyses of the existing and improved condition of the building were made and the energy saving potential of the building was determined. At the same time, their compliance with the regulations has been examined in both cases. As a result of the calculations carried out within the scope of the thesis, the existing building consumes 192,57 kWh/m2year of energy on an annual basis, resulting in the energy consumption of 153,08 kWh/m2year for the proposed improvements. That means energy savings of 21%. In addition, when the current situation of the building is taken into account, the maximum exergy efficiency rate on annual basis is 5.76%, As a result of the improvements, it was 9,89% in the air source heat pump and 16,22% in the earth source heat pump. 146

  • Publication . Other literature type . Conference object . 2019
    Open Access
    Authors: 
    Mantas Švažas; Valentinas Navickas; Rusnė Jegelavičiūtė;
    Publisher: Atlantis Press
    Country: Lithuania

    The authors of the article have investigated the constituents of competitive supply and have presented the algorithm of its formation in the sector of thermal power. The investigations conducted by them indicate that in a given market the supply of goods and services must be presented in proportion to their demand. In this way the business losses and costs from the unrealized demand are reducing and its general competitiveness is growing. The investigations conducted by the authors indicate that the bigger number of the market participants, the bigger influence is made to the business competitiveness by its ability to structurize the supply appropriately. To achieve competitive supply a stable business structure is necessary which enables to form business structures having a stable financial basis. As in the investigated market the action takes place with one product – thermal power – one can efficiently concentrate on the processes of formation of competitive supply. The information collected during the statistical investigation has indicated that the dynamics of untilled areas of agricultural destination can significantly affect the price of heat. By reclaiming these areas and starting to grow energetic plants one can achieve the reduction of the price of heat. Conditions to reorientate the energy system towards the production of the green energy are created. In this way an opportunity to form a competitive supply in respect of the business entities using fossil fuels appears.

  • Open Access Turkish
    Authors: 
    Yüksel, Ahmet;
    Publisher: Fen Bilimleri Enstitüsü

    Isıtma işlemleri, günlük yaşantıda ve endüstride yaygın olarak kullanılan uygulamaların içerisinde yer almaktadır. Konfor şartlarını sağlamak ve metallerin işlenmesini kolaylaştırmak gibi çeşitli sektörlerde bu tür uygulamalardan faydalanılmaktadır. Metal işlemeden, akışkan ısıtmaya kadar geniş uygulama alanı olan elektromanyetik indüksiyon da bu uygulamalardan birisidir. İndüksiyonlu hava ısıtma sistemi hastanelerde, seralarda vb. diğer şartlandırılmış hava gereksinimi olan yerlerin ihtiyacını karşılaması için tasarlanmış, yeni ve inovatif bir teknolojidir.Bu tez çalışmasında; indüksiyonlu hava ısıtma sisteminin enerji performansını belirlemek üzere termodinamik analizler yapılmıştır. Havanın iş akışkanı olarak kullanıldığı sistemde, ısı kayıplarının en aza indirilmesi ve ısıl verimin arttırılması hedeflenmiştir. Analizlerde termodinamiğin I. kanunu kullanılmıştır. Deneysel bulgu doğruluklarının belirlenmesinde, COMSOL programı ve belirsizlik analizlerine başvurulmuştur.Kullanılan prototiplerde, çıkış kesit çapı ve debideki artış ile toplam enerji kayıplarının ve havanın çıkış sıcaklığının azaldığı, ısıl verimin arttığı gözlemlenmiştir. Prototiplerin yalıtımlı durumları da değerlendirilmiş ve yalıtımlı prototiplerin veriminde artış gözlenmiştir. Bulgulara göre en yüksek ısıl verim, çıkış kesit çapının ve debinin en yüksek olduğu, yalıtımlı K-4 prototipde elde edilmiştir (%95,49). En yüksek hava çıkış sıcaklığı (95,4oC) ise; en küçük çıkış kesit çapına sahip yalıtımlı K-3 prototipine en düşük debinin uygulandığı deneyde elde edilmiştir. Heating operation is located in the applications which are widely used in daily life and industry. In various industries as to ensure comfort conditions and to facilitate the processing of metals is utilized from these types of applications. From metal processing to fluid heating, electromagnetic induction heating has a wide application range. Induction air heating system is designed to meet the needs in hospital, greenhouse etc. other requirements that air-conditioned place, is new and innovative technology.In this thesis; thermodynamic analysis was performed to determine the energy performance of the induction air heating system. Minimizing heat losses and increasing thermal efficiency was aimed for the system which used air as a working fluid. First law of thermodynamic was used in the analysis. To determine the accuracy of the experimental findings, COMSOL and uncertainty analysis were consulted.It was obtained that with increasing outlet cross-section diameter and mass flow rate, the total energy loss and outlet temperture of air was decreased, the thermal efficiency was increased for the prototypes. Insulated case of prototypes was evaluated and increased efficiency of insulated prototypes was observed. Based on the findings, the highest thermal efficiency were obtained for insulated K-4 which has the highest cross sectional outlet diameter and flow rate (%95,49). Maximum air temperature (95,4oC) was obtained in experiments in which insulated K-3 prototype with the smallest exit sectional diameter and the lowest flow rate. 99

  • Open Access Turkish
    Authors: 
    Çaştaban, Pelin;
    Publisher: Fen Bilimleri Enstitüsü

    ÖZET Bu çalışmada, ısıtma enerjisi korunumu açısından hacimler için uygun yönlendiriliş durumlarının belirlenmesi hedeflenmiştir. Bir başka deyişle, hacimlerde yıl boyunca gerçekleşen iç hava sıcaklığı değerlerinin değişimine bağlı olarak belirlenen yıllık ısıtma sürelerine göre, en kısa ısıtma süresini gerçekleştiren yönlendiriliş durumunun, ısıtma enerjisi korunumu açısından en uygun yönlendiriliş durumu olarak nitelendirilmesi amaçlanmıştır. Buna göre, önerilen yaklaşımda, yıllık ısıtma sürelerinin belirlenebilmesi için dış çevre iklim koşullarına ait verilerin ve hacimlerde herhangi bir yapma ısıtma sistemi olmadığı durumlarda, iç hava sıcaklıklarının saatlik değişimlerinin hesaplanabilmesi için hacme ilişkin yapma çevre değişkenlerinin değerlerinin belirlenmesi gerekmektedir. Bu hesaplamaların yapılabilmesi için zamana bağlı ve tek boyutlu ısı geçişi denklemlerinin çözümünde sonlu farklar yönteminin ele alındığı bir bilgisayar programından yararlanılmıştır. özellikle ılımlı ve soğuk iklim bölgeleri gibi ısıtma süresinin uzun olduğu bölgelerde, hacme ilişkin diğer yapma çevre değişkenlerinin değerleri de gözönünde bulundurularak, hacimlerde en kısa ısıtma süresini gerçekleştiren, dolayısıyla ısıtma enerjisi harcamalarının minimum düzeye indirilebilmesini sağlayan yönlendiriliş durumlarının belirlenebilmesi gerekli olmaktadır. SUMMARY DETERMINING APPROPRIATE ORIENTATION OF ROOMS FROM THE VIEWPOINT OF HEATING ENERGY CONSERVATION In a particular period of year, the use of active heating systems in rooms is needed because of the effects of the outdoor climatic elements. To create an indoor climate which satisfies users' climatic comfort for health while using minimum heating energy, the determination of the optimum combination of design parameters affecting indoor climate is required. Orientation is also one of the most important parameters to benefit from heating effect of solar radiation. This study suggests an approach for determining appropriate orientation of rooms from the viewpoint of heating energy conservation. The approach is based on heating periods in rooms related to annual variation of indoor air temperature. The aim is to determine orientation which minimizes heating period. The study consists of seven chapters. Chapter 1 In the first chapter, the significance of the subject is touched upon and the content of the study is explained. Chapter 2 In this chapter, the factors which require the use and conservation of heating energy in rooms are touched upon. One of the primary requirements in the room for health is to provide users' climatic comfort. Therefore, the main factor that requires the use of heating energy in the room is the necessity of climatic comfort. Climatic comfort is defined as conditions in which %80 or more of the users find the environment thermally acceptable. Climatic comfort is defined with combinations of different values of the parameters as follows. Environmental parameters (Indoor climatic elements) * Air temperature * Mean radiant temperature * Air velocity XI* Air humidity Personal parameters * Activity * Clothing Definition of climatic comfort can be made by means of Bioclimatic Chart. However, in the underheated period, climatic comfort condition in a room can be met using active heating systems. The reduction of active heating cost is needed because of limited energy sources, increasing prices and air pollution. In order to reduce active heating cost rooms should be designed as passive heating systems. Chapter 3 This chapter deals with the factors that are effective in process of heating energy conservation in rooms. These factors are classified such as; * Outdoor climatic elements - Radiation - Air temperature - Relative air humidity -Wind * Design parameters related to the built environment Built environment is considered at the city, building, room, component or material scale. So there are a lot of parameters that should be paid attention. The unit of built environment analyzed in this study is the room. The design parameters at the room scale are as follows. - Location of the room in the building - Dimensions and shape factor of the room - Orientation of the room - Optical and thermophysical properties of the room envelope Location of the room determines the number of external wall elements surrounding the room and consequently effects the amount of heat gain or loss by means of external elements. The shape factor of the room is described as the ratio of external wall length to room depth. The surface area of external walls that has an important effect on heat gain or loss changes with the shape factor. Orientation is one of the most important parameters because of the variation of solar angles and solar radiation intensity with orientation. XIIOptical parameters of the room envelope are * absorptivity * transmissivity Thermophysical properties are * overall heat transfer coefficient * transparency ratio * time lag * decrement factor All these parameters are effective on determining the amount of heat which is gained or lost by the room and also the amount of energy for providing climatic comfort in the room. Chapter 4 In this chapter, heating period is described and the relationship of heating energy conservation and heating period is explained. Heating period covers the period in which during the active heating systems are required in order to provide climatic comfort conditions for the users. Heating period may be defined by basing on the lowest indoor air temperature value from the climatic comfort point of view or the outdoor air temperature value which are given by Turkish Standards, Regulation for Protection of Air Quality, Codes of Municipal Police of Greater Istanbul. In this study, heating period is defined basing on the lowest indoor air temperature value from the climatic comfort point of view. The lowest indoor air temperature value from the climatic comfort point of view is determined as 21 °C by means of the Bioclimatic Chart. By taking as the basis the lowest indoor air temperature from the climatic comfort viewpoint, heating period is defined as the period during which the indoor air temperature is under 21 °C. If the heating period is long, energy cost increases proportionally. Therefore heating period is one of the criteria which are used for the determination of rooms that give the best performance from the viewpoint of heating energy conservation. Chapter 5 In this chapter, previous approaches that are used for determination appropriate orientation of rooms are introduced and discussed. The majority of previous approaches base the calculations on the intensity of solar radiation effecting either the unit area or the total area of the outer building surface. Also one of the previous approaches is based on XIIItemperature differences between the actual and the required inner surface temperature of the opaque envelope. These approaches are not based on the heating period criterion. But thermal effects of solar radiation on the indoor climate can be clearly determined when an approach based on heating period is used. The orientation that enables the minimum level of heating energy requirement can be also determined especially for moderate and cold regions which have long heating period. Chapter 6 This chapter covers the steps of the approach used to be determined appropriate orientation of rooms from the viewpoint of heating energy conservation. The main steps of the approach are as follows;. Gathering the outdoor climatic data such as solar radiation intensities, hourly air temperature values for the calculations included in the approach.. Assumption on the orientation alternatives for the room.. Determination of the values of design parameters. - determination of the location of the room in the building. - determination of dimensions and shape factor of the room. - determination of the room envelope.. Calculation of the hourly values of the indoor air temperature and preparation of the annual variation chart of indoor air temperature occuring in the rooms which have various orientation alternatives. In this approach, it is assumed that there is no supplementary heating system in the room. Time dependent heat flow calculations to determine indoor air temperature and inner surface temperatures are basing on the finite difference method. Thus the indoor air temperature at any particular time can be calculated by means of the following equation. A~T n m m t* = tj + (LA0ctj (toj - tj) + ZAp. ctj (tci - tj) + bh. I (lx. Ap) + Qv + Qk) m.ch 11 1 tj* indoor air temperature at any particular time, °C. tj indoor air temperature before a time increment At, °C. m mass of the air in the room, kg. XIVch specific heat of the air, J / kg°C. n EAoctj (t0j - tj) amount of heat exchange between the indoor air and the 1 inner surfaces of opaque components of the envelope within the time increment At, W. m EApcq (tCj - tj) amount of heat exchange between the indoor air and the 1 inner surfaces of transparent components of the envelope within the time increment At, W. bh absorptivity coefficient of the indoor air which is transmissed through the transparent components, m £ Ox. Ap) amount of solar heat gain from the transparent components 1 within the time increment At, W. Qv amount of heat exchange between the indoor environment and outdoor environment by means of ventilation and infiltration within the time increment At, W. Qk amount of heat gain to the indoor air from the heat sources in the room within the time increment At, W. Then the annual variation chart of indoor air temperature is prepared by means of hourly values of indoor air temperature.. Determination of heating periods in the room alternatives by taking as the basis the lowest indoor air temperature value from the climatic comfort point of view. The dates and hours on which the indoor air temperature is below 21 °C constitute the heating period. Accordingly, the 21 °C indoor air temperature curves on the annual variation chart also the boundaries of heating period.. Comparison of the room alternatives according to heating period and determination of the orientation which provides the shortest heating period. In this step, the rooms are compared to each other according to heating period. The room which provides the shortest heating period is determined. The orientation of this room is qualified as the most appropriate orientation. Chapter 7 This chapter deals with the application of the approach to the İstanbul region and the results of the application. By means of the approach,. The effect of code particular orientation on indoor climate can be studied. xv. The orientation which enable the maximum heating effect of the solar radiation can be determined for especially moderate and cold regions which have a long heating period..The optimal combination of the orientation and other design parameters related to the room can be determined from the viewpoint of heating energy conservation.. In case of other design parameters have been selected at certain values mandatoryly, the room which provides the optimal performance in heating energy conservation can be described by determining appropriate orientation. XVI 82

  • Open Access
    Authors: 
    Turi Handayani; Winarso Drajad Widodo; Ani Kurniawati; Ketty Suketi;
    Publisher: Institut Pertanian Bogor

    Waktu panen dapat berpengaruh terhadap umur simpan dan kualitas buah selama penyimpanan, sehingga dibutuhkan metode yang tepat dalam menentukan kriteria panen. Percobaan ni bertujuan untuk mengoptimasi akumulasi satuan panas sebagai kriteria panen pisang Barangan dan pengaruhnya terhadap kualitas buah. Percobaan dilakukan di PTPN VIII Parakan Salak, Sukabumi, Jawa Barat pada Oktober 2018 hingga Februari 2019 dengan menggunakan Rancangan Acak Kelompok (RAK) faktor tunggal dengan perlakuan lima waktu antesis. Antesis 1 (13 Oktober 2018), antesis 2 (20 Oktober 2018), antesis 3 (27 Oktober 2018), antesis 4 (3 November 2018) antesis 5 (10 November 2018). Hasil penelitian menunjukkan bahwa satuan panas 1 234.50±2.76 0C hari dapat digunakan sebagai kriteria panen pisang Barangan dengan umur panen 72 -73 HSA dan umur simpan 16-17 hari. Waktu antesis tidak berpengaruh terhadap ukuran buah saat dipanen, umur simpan, susut bobot, kualitas fisik dan kualitas kimia buah. Kata kunci: kualitas buah, kematangan, umur simpan, suhu, susut bobot

  • Open Access
    Authors: 
    O. V. Kostan;
    Publisher: Dniprovskii University of the Humanities
  • Authors: 
    Inna Gritsevich; Yury Dashevsky; Vladimir Zhuze;
    Publisher: Elsevier
  • Open Access
    Authors: 
    Zsolt Karácsonyi; Zoltán Hantos;
    Publisher: ERFARET

    <p class="p1">Az épületek energiafelhasználása napjainkban központi kérdés az Európai Unióban és Magyarországon egyaránt. <span class="s1">A tervek szerint 2021-től csak </span>közel nulla energiafogyasztású épületeket lehet építeni. Magyarországon az épületek energiafelhasználása adja a teljes energiafogyasztás 50–60%-át (ez egyes források szerint 40%, pontosan megbecsülni nagyon nehéz)<span class="s1">. Az épületek fűtési energiaszükséglete a teljes energiafogyasztás </span>mintegy 40%-át teszi ki. Egy épület üzemelése során<span class="s1"> a fűtés, a meleg víz, a hűtés és a szellőztetés használ fel energiát</span> – a világítás energiaigényét lakóépületek esetén elhanyagoljuk. Az adatok<span class="s1"> és a tapasztalat is azt mutatja, hogy a magyarországi épületállomány nagyon rossz állapotban van energetikai, elsősorban hőszigetelési szempontból. </span></p><p class="p2">Egy épület energiafelhasználását két tényező befolyásolja: az épületszerkezetek hőtechnikai minősége és az épületgépészeti rendszerek hatékonysága.<span class="s2"> E cikk a hatályos számító eljárások alkalmazásával kívánja modellezni és összehasonlítani külö</span>nböző épületszerkezetű épületek fűtési <span class="s2">energiaigényét. Ehhez egy átlagos lakóépület szolgál alapul. </span>A belső lehűlő felületekhez különböző külső térelhatároló<span class="s2"> szerkezeteket rendelt</span>ünk hozzá. Az épület egyszerű geometriájából adódóan a külső <span class="s2">falak és a zárófödém szerkezetét változtattuk. Kiszámítottuk a rétegtervi </span>hőátbocsátási tényezőket, az éves fűtési energiaszükségletet és az ehhez szükséges földgáz és tű<span class="s2">zifa mennyiségét.</span></p><p class="p3">A fa könnyűszerkezetes épület esetében ~25%-kal alacsonyabb a fűtés energiaigénye<span class="s2">, mint a hagyományos téglaépületek esetében.</span></p>

  • Open Access
    Authors: 
    Torres-Cruz Maria Monserrat; Fuentes-Davila Guillermo; Felix-Valencia Pedro;
    Publisher: IJAEB Publication
  • Publication . Part of book or chapter of book . 2011
    Authors: 
    Clayton Crockett;
    Publisher: Fordham University Press